Cochlin Deficiency Protects Aged Mice from Noise-Induced Hearing Loss

科克林缺乏症可保护老年小鼠免受噪声引起的听力损失

阅读:4
作者:Dorien Verdoodt, Noa Peeleman, Krystyna Szewczyk, Guy Van Camp, Peter Ponsaerts, Vincent Van Rompaey

Abstract

Several studies have shown that type IV fibrocytes, located in the spiral ligament, degenerate first after noise exposure. Interestingly, this is the region where Coch expression is most abundant. As it is suggested that cochlin plays a role in our innate immune system, our goal is to investigate hearing thresholds and inner ear inflammation after noise exposure in Coch knockout (Coch-/-) mice compared to Coch wildtype (Coch+/+) mice. Animals were randomly allocated to a noise exposure group and a control group. Vestibular and auditory testing was performed at 48 h and one week after noise exposure. Whole mount staining and cryosectioning of the cochlea was performed in order to investigate hair cells, spiral ganglion neurons, inner ear inflammation, Coch expression and fibrocyte degeneration. Hearing assessment revealed that Coch+/+ mice had significantly larger threshold shifts than Coch-/- mice after noise exposure. We were unable to identify any differences in hair cells, neurons, fibrocytes and influx of macrophages in the inner ear between both groups. Interestingly, Coch expression was significantly lower in the group exposed to noise. Our results indicate that the absence of Coch has a protective influence on hearing thresholds after noise exposure, but this is not related to reduced inner ear inflammation in the knockout.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。