TGFβ signaling underlies hematopoietic dysfunction and bone marrow failure in Shwachman-Diamond Syndrome

TGFβ 信号传导是 Shwachman-Diamond 综合征中造血功能障碍和骨髓衰竭的根本原因

阅读:9
作者:Cailin E Joyce, Assieh Saadatpour, Melisa Ruiz-Gutierrez, Ozge Vargel Bolukbasi, Lan Jiang, Dolly D Thomas, Sarah Young, Inga Hofmann, Colin A Sieff, Kasiani C Myers, Jennifer Whangbo, Towia A Libermann, Chad Nusbaum, Guo-Cheng Yuan, Akiko Shimamura, Carl D Novina

Abstract

Shwachman-Diamond Syndrome (SDS) is a rare and clinically-heterogeneous bone marrow (BM) failure syndrome caused by mutations in the Shwachman-Bodian-Diamond Syndrome (SBDS) gene. Although SDS was described over 50 years ago, the molecular pathogenesis is poorly understood due, in part, to the rarity and heterogeneity of the affected hematopoietic progenitors. To address this, we used single cell RNA sequencing to profile scant hematopoietic stem and progenitor cells from SDS patients. We generated a single cell map of early lineage commitment and found that SDS hematopoiesis was left-shifted with selective loss of granulocyte-monocyte progenitors. Transcriptional targets of transforming growth factor-beta (TGFβ) were dysregulated in SDS hematopoietic stem cells and multipotent progenitors, but not in lineage-committed progenitors. TGFβ inhibitors (AVID200 and SD208) increased hematopoietic colony formation of SDS patient BM. Finally, TGFβ3 and other TGFβ pathway members were elevated in SDS patient blood plasma. These data establish the TGFβ pathway as a novel candidate biomarker and therapeutic target in SDS and translate insights from single cell biology into a potential therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。