Regulation of murine NK cell exhaustion through the activation of the DNA damage repair pathway

通过激活 DNA 损伤修复通路调节小鼠 NK 细胞耗竭

阅读:8
作者:Maite Alvarez, Federico Simonetta, Jeanette Baker, Antonio Pierini, Arielle S Wenokur, Alyssa R Morrison, William J Murphy, Robert S Negrin

Abstract

NK cell exhaustion (NCE) due to sustained proliferation results in impaired NK cell function with loss of cytokine production and lytic activity. Using murine models of chronic NK cell stimulation, we have identified a phenotypic signature of NCE characterized by up-regulation of the terminal differentiation marker KLRG1 and by down-regulation of eomesodermin and the activating receptor NKG2D. Chronic stimulation of mice lacking NKG2D resulted in minimized NCE compared to control mice, thus identifying NKG2D as a crucial mediator of NCE. NKG2D internalization and downregulations on NK cells has been previously observed in the presence of tumor cells with high expression of NKG2D ligands (NKG2DL) due to the activation of the DNA damage repair pathways. Interestingly, our study revealed that during NK cell activation there is an increase of MULT1, and NKG2DL, that correlates with an induction of DNA damage. Treatment with the ATM DNA damage repair pathway inhibitor KU55933 (KU) during activation reduced NCE by improving expression of activation markers and genes involved in cell survival, by sustaining NKG2D expression and by preserving cell functionality. Importantly, NK cells expanded ex vivo in the presence of KU displayed increased anti-tumor efficacy in both NKG2D-dependent and -independent mouse models. Collectively, these data demonstrate that NCE is caused by DNA damage and regulated, at least in part, by NKG2D. Further, the prevention of NCE is a promising strategy to improve NK cell-based immunotherapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。