Reduced GFAP Expression in Bergmann Glial Cells in the Cerebellum of Sigma-1 Receptor Knockout Mice Determines the Neurobehavioral Outcomes after Traumatic Brain Injury

Sigma-1 受体敲除小鼠小脑 Bergmann 胶质细胞中 GFAP 表达减少决定了创伤性脑损伤后的神经行为结果

阅读:7
作者:Gundega Stelfa, Edijs Vavers, Baiba Svalbe, Rinalds Serzants, Anna Miteniece, Lasma Lauberte, Solveiga Grinberga, Baiba Gukalova, Maija Dambrova, Liga Zvejniece

Abstract

Neuroprotective effects of Sigma-1 receptor (S1R) ligands have been observed in multiple animal models of neurodegenerative diseases. Traumatic brain injury (TBI)-related neurodegeneration can induce long-lasting physical, cognitive, and behavioral disabilities. The aim of our study was to evaluate the role of S1R in the development of neurological deficits after TBI. Adult male wild-type CD-1 (WT) and S1R knockout (S1R-/-) mice were subjected to lateral fluid percussion injury, and behavioral and histological outcomes were assessed for up to 12 months postinjury. Neurological deficits and motor coordination impairment were less pronounced in S1R-/- mice with TBI than in WT mice with TBI 24 h after injury. TBI-induced short-term memory impairments were present in WT but not S1R-/- mice 7 months after injury. Compared to WT animals, S1R-/- mice exhibited better motor coordination and less pronounced despair behavior for up to 12 months postinjury. TBI induced astrocyte activation in the cortex of WT but not S1R-/- mice. S1R-/- mice presented a significantly reduced GFAP expression in Bergmann glial cells in the molecular layer of the cerebellum compared to WT mice. Our findings suggest that S1R deficiency reduces TBI-induced motor coordination impairments by reducing GFAP expression in Bergmann glial cells in the cerebellum.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。