The turnover of estrogen receptor α by the selective estrogen receptor degrader (SERD) fulvestrant is a saturable process that is not required for antagonist efficacy

选择性雌激素受体降解剂 (SERD) 氟维司群对雌激素受体 α 的转换是一个可饱和过程,并非拮抗剂疗效所必需的

阅读:9
作者:Suzanne E Wardell, Jeffrey R Marks, Donald P McDonnell

Abstract

It has become apparent of late that even in tamoxifen and/or aromatase resistant breast cancers, ERα remains a bona fide therapeutic target. Not surprisingly, therefore, there has been considerable interest in developing Selective ER Degraders (SERDs), compounds that target the receptor for degradation. Currently, ICI 182,780 (ICI, fulvestrant) is the only SERD approved for the treatment of breast cancer. However, the poor pharmaceutical properties of this injectable drug and its lack of superiority over second line aromatase inhibitors in late stage breast cancer have negatively impacted its clinical use. These findings have provided the impetus to develop second generation, orally bioavailable SERDs with which quantitative turnover of ERα in tumors can be achieved. Interestingly however, the contribution of SERD activity to fulvestrant efficacy is unclear, making it difficult to define the characteristics desired of the next generation of ER antagonists. It is of significance therefore, that we have determined that the antagonist activity of ICI and its ability to induce ERα degradation are not coupled processes. Specifically, our results indicate that it is the ability of ICI to interact with ERα and to (a) competitively displace estradiol and (b) induce a conformational change in ER incompatible with transcriptional activation that are likely to be the most important pharmacological characteristics of this drug. Collectively, these data argue for a renewed emphasis on the development of high affinity, orally bioavailable pure antagonists and suggest that SERD activity though proven effective may not be required for ERα antagonism in breast cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。