AAV9-mediated delivery of miR-23a reduces disease severity in Smn2B/-SMA model mice

AAV9 介导的 miR-23a 递送可降低 Smn2B/-SMA 模型小鼠的疾病严重程度

阅读:9
作者:Kevin A Kaifer, Eric Villalón, Benjamin S O'Brien, Samantha L Sison, Caley E Smith, Madeline E Simon, Jose Marquez, Siri O'Day, Abigail E Hopkins, Rachel Neff, Hansjörg Rindt, Allison D Ebert, Christian L Lorson

Abstract

Spinal muscular atrophy (SMA) is a neuromuscular disease caused by deletions or mutations in survival motor neuron 1 (SMN1). The molecular mechanisms underlying motor neuron degeneration in SMA remain elusive, as global cellular dysfunction obscures the identification and characterization of disease-relevant pathways and potential therapeutic targets. Recent reports have implicated microRNA (miRNA) dysregulation as a potential contributor to the pathological mechanism in SMA. To characterize miRNAs that are differentially regulated in SMA, we profiled miRNA levels in SMA induced pluripotent stem cell (iPSC)-derived motor neurons. From this array, miR-23a downregulation was identified selectively in SMA motor neurons, consistent with previous reports where miR-23a functioned in neuroprotective and muscle atrophy-antagonizing roles. Reintroduction of miR-23a expression in SMA patient iPSC-derived motor neurons protected against degeneration, suggesting a potential miR-23a-specific disease-modifying effect. To assess this activity in vivo, miR-23a was expressed using a self-complementary adeno-associated virus serotype 9 (scAAV9) viral vector in the Smn2B/- SMA mouse model. scAAV9-miR-23a significantly reduced the pathology in SMA mice, including increased motor neuron size, reduced neuromuscular junction pathology, increased muscle fiber area, and extended survival. These experiments demonstrate that miR-23a is a novel protective modifier of SMA, warranting further characterization of miRNA dysfunction in SMA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。