The interference of DEHP in precocious puberty of females mediated by the hypothalamic IGF-1/PI3K/Akt/mTOR signaling pathway

DEHP通过下丘脑IGF-1/PI3K/Akt/mTOR信号通路干预女性性早熟

阅读:9
作者:Pu Shao, Yuzhuo Wang, Meng Zhang, Xinggui Wen, Jun Zhang, Zhonghang Xu, Min Hu, Jinlan Jiang, Te Liu

Abstract

DEHP is reported to cause precocious puberty of females in both humans and rodents, but the underlying mechanisms were largely unknown. This study was designed to clarify the effects and the mechanisms of DEHP on the pathogenesis of sexual precocity. Prepubertal female rats were treated with DEHP for 4 weeks. Key organs were analyzed in control conditions and after exposure to 0.2, 1, and 5 mg/kg/day DEHP in pubertal female rats. To determine the role of the IGF-1/PI3K/Akt/mTOR signaling pathway in DEHP-induced female precocious puberty, 36 rats were treated with 5 mg/kg/day DEHP to establish a model of female precocious puberty. And we investigated the expression of genes and proteins related to IGF-1 pathway in rat hypothalamus after treatment with inhibitors. In the present study, we observed that DEHP treatment resulted in earlier vaginal opening time, higher number of Nissl bodies in the hypothalamus neurons, lower apoptosis of hypothalamic cells, higher IGF-1 and GnRH levels in the serum and hypothalamus. DEHP could also upregulated the expression of IGF-1/PI3K/Akt/mTOR pathway and GnRH in the hypothalamus of adolescent female rats, and inhibition of IGF-1R and mTOR in hypothalamus could block the activation of Kiss-1, GPR54, and GnRH by DEHP. In summary, our study suggested that DEHP might activate the hypothalamic GnRH neurons prematurely through the IGF-1 signaling pathway and promote GnRH release, leading to the initiation of female sexual development. Our results provide a new molecular mechanism underlying reproductive and developmental toxicity in pubertal female rats induced by DEHP.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。