NH-sulfoximine: A novel pharmacological inhibitor of the mitochondrial F1 Fo -ATPase, which suppresses viability of cancerous cells

NH-亚砜亚胺:一种新型线粒体 F1 Fo -ATPase 药理抑制剂,可抑制癌细胞活力

阅读:5
作者:Daniela Strobbe, Rosalba Pecorari, Oriana Conte, Antonella Minutolo, Christine M M Hendriks, Stefan Wiezorek, Danilo Faccenda, Rosella Abeti, Carla Montesano, Carsten Bolm, Michelangelo Campanella

Background and purpose

The mitochondrial F1 Fo -ATPsynthase is pivotal for cellular homeostasis. When respiration is perturbed, its mode of action everts becoming an F1 Fo -ATPase and therefore consuming rather producing ATP. Such a reversion is an obvious target for pharmacological intervention to counteract pathologies. Despite this, tools to selectively inhibit the phases of ATP hydrolysis without affecting the production of ATP remain scarce. Here, we report on a newly synthesised chemical, the NH-sulfoximine (NHS), which achieves such a selectivity. Experimental approach: The chemical structure of the F1 Fo -ATPase inhibitor BTB-06584 was used as a template to synthesise NHS. We assessed its pharmacology in human neuroblastoma SH-SY5Y cells in which we profiled ATP levels, redox signalling, autophagy pathways and cellular viability. NHS was given alone or in combination with either the glucose analogue 2-deoxyglucose (2-DG) or the chemotherapeutic agent etoposide. Key

Purpose

The mitochondrial F1 Fo -ATPsynthase is pivotal for cellular homeostasis. When respiration is perturbed, its mode of action everts becoming an F1 Fo -ATPase and therefore consuming rather producing ATP. Such a reversion is an obvious target for pharmacological intervention to counteract pathologies. Despite this, tools to selectively inhibit the phases of ATP hydrolysis without affecting the production of ATP remain scarce. Here, we report on a newly synthesised chemical, the NH-sulfoximine (NHS), which achieves such a selectivity. Experimental approach: The chemical structure of the F1 Fo -ATPase inhibitor BTB-06584 was used as a template to synthesise NHS. We assessed its pharmacology in human neuroblastoma SH-SY5Y cells in which we profiled ATP levels, redox signalling, autophagy pathways and cellular viability. NHS was given alone or in combination with either the glucose analogue 2-deoxyglucose (2-DG) or the chemotherapeutic agent etoposide. Key

Results

NHS selectively blocks the consumption of ATP by mitochondria leading a subtle cytotoxicity associated via the concomitant engagement of autophagy which impairs cell viability. NHS achieves such a function independently of the F1 Fo -ATPase inhibitory factor 1 (IF1).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。