Advanced quantification for single-cell adhesion by variable-angle TIRF nanoscopy

通过可变角度 TIRF 纳米显微镜对单细胞粘附进行高级量化

阅读:12
作者:Dalia El Arawi, Cyrille Vézy, Régis Déturche, Maxime Lehmann, Horst Kessler, Monique Dontenwill, Rodolphe Jaffiol

Abstract

Over the last decades, several techniques have been developed to study cell adhesion; however, they present significant shortcomings. Such techniques mostly focus on strong adhesion related to specific protein-protein associations, such as ligand-receptor binding in focal adhesions. Therefore, weak adhesion, related to less specific or nonspecific cell-substrate interactions, are rarely addressed. Hence, we propose in this work a complete investigation of cell adhesion, from highly specific to nonspecific adhesiveness, using variable-angle total internal reflection fluorescence (vaTIRF) nanoscopy. This technique allows us to map in real time cell topography with a nanometric axial resolution, along with cell cortex refractive index. These two key parameters allow us to distinguish high and low adhesive cell-substrate contacts. Furthermore, vaTIRF provides cell-substrate binding energy, thus revealing a correlation between cell contractility and cell-substrate binding energy. Here, we highlight the quantitative measurements achieved by vaTIRF on U87MG glioma cells expressing different amounts of α 5 integrins and distinct motility on fibronectin. Regarding integrin expression level, data extracted from vaTIRF measurements, such as the number and size of high adhesive contacts per cell, corroborate the adhesiveness of U87MG cells as intended. Interestingly enough, we found that cells overexpressing α 5 integrins present a higher contractility and lower adhesion energy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。