METTL3 promotes microglial inflammation via MEF2C in spinal cord injury

METTL3 通过 MEF2C 促进脊髓损伤中的小胶质细胞炎症

阅读:7
作者:Dongliang Wang #, Wei Qian #, Duanrong Wu, Ya Wu, Kun Lu, Guoyou Zou

Abstract

Spinal cord injury (SCI) is a significant contributor to disability in contemporary society, resulting in substantial psychological and economic burdens for patients and their family. Microglia-mediated inflammation is an important factor affecting the nerve repair of SCI patients. N6-methyladenosine (m6A) is a prevalent epigenetic modification in mammals, which shows a strong association with inflammation. However, the mechanism of m6A modification regulating microglia-mediated inflammation is still unclear. Here, we observed that METTL3, a m6A methylase, was increased in SCI mice and lipopolysaccharide (LPS)-exposed BV2 cells. Knockdown of METTL3 inhibited the increased expression of iNOS and IL-1β induced by LPS in vitro. Subsequently, MEF2C, myocyte-specific enhancer factor 2C, was decreased in SCI mice and LPS-exposed BV2 cells. Knockdown of MEF2C promoted the expression of iNOS and IL-1β. Sequence analysis showed that there were multiple highly confident m6A modification sites on the MEF2C mRNA. METTL3 antibody could pull down a higher level of MEF2C mRNA than the IgG in RNA binding protein immunoprecipitation assay. Knockdown of METTL3 promoted MEF2C protein expression and MEF2C mRNA expression, accompanied by a reduced m6A modification level on the MEF2C mRNA. Knockdown of MEF2C inhibited the anti-inflammatory effect of METTL3 siRNA. Our results suggest that METTL3 promotes microglia inflammation via regulating MEF2C mRNA m6A modification induced by SCI and LPS treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。