A novel approach of kinship determination based on the physical length of genetically shared regions of chromosomes

基于染色体遗传共享区域的物理长度确定亲属关系的新方法

阅读:9
作者:Sohee Cho, Eunsoon Shin, Yoon Gi Park, Seung Ho Choi, Eun Kyung Choe, Jung Ho Bae, Jong-Eun Lee, Soong Deok Lee

Background

Determination of genetic relatedness between individuals plays a crucial role in resolving numerous civil cases involving familial relationships and in forensic investigation concerning missing persons. Short tandem repeats (STRs), known for their high degree of DNA polymorphism, have traditionally been the primary choice of DNA markers in genetic testing, but their application for kinships testing is limited to cases involving close kinship. SNPs have emerged as promising supplementary markers for kinship determination. Nevertheless, the challenging remains in discriminating between third-degree or more distant relatives, such as first cousins, using SNPs.

Conclusion

This method has a potential to determine the different degree of kinship between individuals and to distinguish non-relatives from true relatives, which can be of great help for practical applications in kinship determination.

Methods

A high-density SNP data from 337 individuals of Korean families using Affymetrix Axiom KORV1.0-96 Array was obtained for this study. SNPs were aligned by chromosomal positions, and identity-by-state (IBS) was determined, and then shared regions as consecutive SNPs with IBS of 1 or 2 were investigated. The physical lengths of these IBS segments were measured and summed them to create an Index, as a measure of kinship.

Objective

To investigate a kinship analysis method for distant degree of familial relationships using high-density SNP data.

Results

The kinship was determined by the physical length of shared chromosomal regions that are distinguished by each kinship. Using this method, the relationship was able be distinguished up to the fourth degree of kinship, and non-relatives were clearly distinguished from true relatives. We also found a potential for this approach to be used universally, regardless of microarray platforms for SNP genotyping and populations.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。