DL-3-n-butylphthalide protects endothelial cells against advanced glycation end product-induced injury by attenuating oxidative stress and inflammation responses

DL-3-n-丁基苯酞通过减弱氧化应激和炎症反应保护内皮细胞免受晚期糖基化终产物引起的损伤

阅读:7
作者:Chang-Yun Liu, Zhen-Hua Zhao, Zhi-Ting Chen, Chun-Hui Che, Zhang-Yu Zou, Xiao-Min Wu, Sheng-Gen Chen, Yuan-Xiao Li, Han-Bin Lin, Xiao-Fan Wei, Jie You, Hua-Pin Huang

Abstract

Endothelial dysfunction, regarded as a key step in the pathophysiological course of diabetic vascular complications, is initiated and deteriorated by advanced glycation end products (AGEs). DL-3-n-butylphthalide (DL-NBP) has been proven to have protective effects on neurons and vascular endothelial cells against ischemic and anoxic damage. The aim of the present study was to investigate whether NBP is able to attenuate AGE-induced endothelial dysfunction in vitro, and also elucidate the possible underlying mechanism. An injury model of human umbilical vein endothelial cells (HUVECs) induced by AGEs (200 µg/ml) was established. The results demonstrated that pretreatment with NBP (1-100 µM) significantly increased HUVEC viability and inhibited the apoptosis induced by AGEs. In addition, AGEs stimulated the expression levels of the receptor for AGEs protein and the downstream protein nuclear factor-κB in HUVECs, which were inhibited by pretreatment with NBP. Furthermore, it significantly reduced reactive oxygen species generation and the level of the inflammatory cytokines, intercellular cell adhesion molecule-1 and monocyte chemotactic protein-1, in HUVECs mediated by AGEs. The current findings indicated that NBP attenuated AGE-induced endothelial dysfunction by ameliorating inflammation and oxidative stress responses.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。