Banxia Baizhu Tianma decoction attenuates obesity-related hypertension

半夏白术天麻汤可减轻肥胖相关高血压

阅读:7
作者:Yue-Hua Jiang, Peng Zhang, Yannan Tao, Yang Liu, Guangshang Cao, Le Zhou, Chuan-Hua Yang

Aim of the study

The present study tried to interpret the pharmacology of the ancient formula of BBTD. Herein, we focused on the plasma metabonomics of BBTD and evaluated the effect and targets of BBTD on endothelial protective effect.

Conclusions

BBTD attenuates obesity-related hypertension by regulating metabolism of glycerophospholipids and endothelial protection.

Methods

Obesity-related hypertensive mice were induced by high-fat diet for 20 weeks. BBTD (17.8 g/kg) was administered intragastrically for 8 weeks, and telmisartan group (12.5 mg/kg) was used as positive drug. Body weight, blood pressure, triglyceride and cholesterol were recorded to evaluate the efficacy of BBTD in vivo. Lipid deposition in aortic roots was assessed by oil red O staining, while morphology of aortas was observed by HE staining. Ultra performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS) was performed to study the plasma non-targeted metabonomics. According to the data of metabonomics, human aortic endothelial cells (HAECs) were treated by oxidized low-density lipoprotein (ox-LDL, 50 μg/mL) with/without BBTD (2, 1 or 0.5 mg/mL). Apoptosis rate (Annexin V-FITC/PI), migration (Transwell), cytoskeleton (Phalloidin) and density of VE-cadherin (Immunofluorescence staining) were used to investigate the effect of BBTD in vitro. Transcriptome sequencing was performed (2 mg/mL BBTD vs ox-LDL) to screen the possible targets of BBTD in endothelial protection against ox-LDL.

Results

BBTD effectively reduced the body weight and total cholesterol, and decreased 12.1 mmHg in SBP and 10.5 mmHg in DBP of obesity-related hypertensive mice (P < 0.05). BBTD attenuated lipid deposition in arterial roots and improved the morphology of aortas in vivo. Plasma metabolite profiles identified 94 differential metabolites and suggested BBTD mainly affected glycerophospholipids and fatty acyls. Bioinformatics analysis indicated sphingolipid metabolism and fluid shear stress and atherosclerosis were main pathways. Therefore, we focused on endothelial protective effect of BBTD against ox-LDL. In vitro, BBTD demonstrated endothelial protective effects, decreasing apoptosis rate, improving cell migration in dose-dependent manner and maintaining cell morphology. Transcriptome sequencing identified 251 downregulated and 603 upregulated mRNAs after 24h-BBTD treatment, which reversed 51.8% change in mRNAs (393 DE mRNAs) induced by ox-LDL. Bioinformatics analysis supported the potential of BBTD in hypertension and suggested that BBTD improved endothelial cells by targeting mainly on p53 and PPAR signaling pathways. Conclusions: BBTD attenuates obesity-related hypertension by regulating metabolism of glycerophospholipids and endothelial protection.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。