E3 ubiquitin ligase FBXW11 as a novel inflammatory biomarker is associated with immune infiltration and NF-κB pathway activation in pancreatitis and pancreatic cancer

E3 泛素连接酶 FBXW11 作为一种新型炎症生物标志物与胰腺炎和胰腺癌中的免疫浸润和 NF-κB 通路激活有关

阅读:9
作者:Peng Tan, Shuang Cai, Zhiwei Huang, Mo Li, Shenglu Liu, Jiatong Chen, Wenguang Fu, Lingyu Zhao

Background

Pancreatic cancer (pancreatic ductal adenocarcinoma, PDAC) is an aggressive disease with an overall poor prognosis. Pancreatitis is a major risk factor for the development of PDAC. Due to the lack of reliable and accurate biomarkers, the diagnosis, treatment, and prognosis of PDAC face great challenges. It is of great significance to elucidate the pathogenesis of PDAC and explore novel inflammatory biomarkers.

Conclusions

Our research not only provides evidence for FBXW11 as a novel inflammatory biomarker but also provides new insights into the research and clinical treatment of pancreatic cancer.

Methods

We identified E3 ubiquitin ligases associated with pancreatic inflammation by combining multiple GEO datasets and UbiNet 2.0, and integrating the WGCNA algorithm and Limma R package. A risk score model for PDAC patients was established by using LASSO regression. We investigated the correlation between FBXW11 and immune cell infiltration using CIBERSORT, mMCP-counter, ImmuCellAI-mouse, QUANTISEQ, and TIMER algorithms, based on GEO, ArrayExpress, and TCGA datasets. We used Ubibrowser 2.0 to predict potential substrates for FBXW11. WikiPathway, MSigDB Hallmark, and Elsevier pathway analysis of FBXW11 key substrates were also performed using the EnrichR database. We detected protein expression through IHC, immunofluorescence, and western blot in the cerulein-induced acute pancreatitis mouse model.

Results

We first identified that FBXW11 exhibited a clear tendency to gradually increase in normal, pancreatitis, and PDAC patients. The validation analysis revealed that the FBXW11 protein exhibited significantly high expression in cerulein-induced acute pancreatitis mice, with its distribution primarily observed in the cytoplasm. Simultaneously, we developed a risk model utilizing the genes associated with FBXW11 to forecast the outcome of patients with PDAC and the likelihood of pancreatitis advancing to pancreatic cancer. Functional analysis showed that FBXW11, as a novel inflammatory biomarker, had a significant positive correlation with macrophage infiltration and the NF-κB signaling pathway. Finally, the western blot assay of the NF-κB signaling pathway in pancreatic tissues demonstrated that high activation of NF-κB was correlated with high expression of FBXW11. Conclusions: Our research not only provides evidence for FBXW11 as a novel inflammatory biomarker but also provides new insights into the research and clinical treatment of pancreatic cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。