Impaired autophagy in microglia aggravates dopaminergic neurodegeneration by regulating NLRP3 inflammasome activation in experimental models of Parkinson's disease

在帕金森病实验模型中,小胶质细胞自噬受损通过调节 NLRP3 炎症小体活化加剧多巴胺能神经变性

阅读:8
作者:Yue Qin, Jingru Qiu, Ping Wang, Jia Liu, Yong Zhao, Fan Jiang, Haiyan Lou

Abstract

Microglia-mediated inflammation plays an important role in the pathogenesis of several neurodegenerative diseases including Parkinson's disease (PD). Recently, autophagy has been linked to the regulation of the inflammatory response. However, the potential role of microglial autophagy in the context of PD pathology has not been characterized. In the present study, we investigated whether impaired microglial autophagy would affect dopaminergic neurodegeneration and neuroinflammation both in vivo and in vitro. In vitro, BV2 microglial cells were exposed to LPS in the presence or absence of autophagy-related gene 5 (Atg5) small interference RNA (Atg5-siRNA). For in vivo study, microglial Atg5 conditional knockout (Atg5flox/flox; CX3CR1-Cre) mice and their wild-type littermates (Atg5flox/flox) were intraperitoneally injected with MPTP to induce experimental PD model. Our results revealed that disruption of autophagy by Atg5-siRNA aggravated LPS-induced inflammatory responses in BV2 cells and caused greater apoptosis in SH-SY5Y cells treated with BV2 conditioned medium. In mice, impaired autophagy in microglia exacerbated dopaminergic neuron loss in response to MPTP. The mechanism by which the deficiency of microglial autophagy promoted neuroinflammation and dopaminergic neurodegeneration was related to the regulation of NLRP3 inflammasome activation. These findings demonstrate that impairing microglial autophagy aggravates pro-inflammatory responses to LPS and exacerbates MPTP-induced neurodegeneration by modulating NLRP3 inflammasome responses. We anticipate that enhancing microglial autophagy may be a promising new therapeutic strategy for PD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。