Nuclear Factor Y (NF-Y) Modulates Encystation in Entamoeba via Stage-Specific Expression of the NF-YB and NF-YC Subunits

核因子 Y (NF-Y) 通过 NF-YB 和 NF-YC 亚基的阶段特异性表达来调节内阿米巴的包囊形成

阅读:3
作者:Dipak Manna, Upinder Singh

Abstract

Nuclear factor Y (NF-Y) is a heterotrimeric transcription factor composed of three subunits, namely, NF-YA, NF-YB, and NF-YC, which are conserved throughout evolution. In higher eukaryotes, NF-Y plays important roles in several cellular processes (development, cell cycle regulation, apoptosis, and response to growth, stress, and DNA damage) by controlling gene expression through binding to a CCAAT promoter motif. We demonstrated that NF-Y subunits in the protist Entamoeba, while significantly divergent from those of higher eukaryotes, have well-conserved domains important for subunit interactions and DNA binding and that NF-YB and NF-YC are developmentally expressed during encystation. Electrophoretic mobility shift assays confirmed that the NF-Y protein(s) from Entamoeba cysts binds to a CCAAT motif. Consistent with a role as a transcription factor, the NF-Y proteins show nuclear localization during development. Additionally, we demonstrated that NF-YC localizes to the chromatoid body (an RNA processing center) during development, indicating that it may have a role in RNA processing. Finally, silencing of the NF-YC subunit resulted in reduced stability of the NF-Y complex and decreased encystation efficiency. We demonstrated that the NF-Y complex functions at a time point subsequent to the NAD+ flux and expression of the transcription factor encystation regulatory motif-binding protein, both of which are early regulators of Entamoeba development. Taken together, our results demonstrate that the NF-Y complex plays an important role in regulating encystation in Entamoeba and add to our understanding of the transcriptional networks and signals that control this essential developmental pathway in an important human pathogen.IMPORTANCE The human parasite Entamoeba histolytica is an important pathogen with significant global impact and is a leading cause of parasitic death in humans. Since only the cyst form can be transmitted, blocking encystation would prevent new infections, making the encystation pathway an attractive target for the development of new drugs. Identification of the genetic signals and transcriptional regulatory networks that control encystation would be an important advance in understanding the developmental cascade. We show that the Entamoeba NF-Y complex plays a crucial role in regulating the encystation process in Entamoeba.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。