Acute effects of fatty acids on autophagy in NPY neurones

脂肪酸对 NPY 神经元自噬的急性影响

阅读:4
作者:Andressa Reginato, Beatriz Piatezzi Siqueira, Josiane Érica Miyamoto, Mariana Portovedo, Suleyma de Oliveira Costa, Thaís de Fante, Hosana Gomes Rodrigues, Letícia Martins Ignácio-Souza, Márcio Alberto Torsoni, Adriana Souza Torsoni, Hervé Le Stunff, Denise D Belsham, Marciane Milanski

Abstract

High-fat diet (HFD) feeding is deleterious to hypothalamic tissue, leading to inflammation and lipotoxicity, as well as contributing to central insulin resistance. Autophagy is a process that restores cellular homeostasis by degrading malfunctioning organelles and proteins. Chronic HFD-feeding down-regulates hypothalamic autophagy. However, the effects of short-term HFD-feeding and the saturated fatty acid palmitate (PA) on hypothalamic autophagy and in neurones that express neuropeptide Y (NPY) and agouti-related peptide remains unknown. Therefore, we assessed hypothalamic autophagy after 1 and 3 days of HFD-feeding. We also injected PA i.c.v and analysed the modulation of autophagy in hypothalamic tissue. Both interventions resulted in changes in autophagy-related gene profiles without significant differences in protein content of p62 and LC3B-II, markers of the autophagy pathway. When we assessed native NPY neurones in brain slices from PA-treated animals, we observed increased levels of Atg7 and LC3B protein in response to PA treatment, indicating the induction of autophagy. We then tested the direct effects of fatty acids using the immortalised hypothalamic NPY-expressing neuronal cell model mHypoE-46. We found that PA, but not palmitoleate (PO) (a monounsaturated fatty acid), was able to induce autophagy. Co-treatment with PA and PO was able to block the PA-mediated induction of autophagy, as assessed by flow cytometry. When the de novo ceramide synthesis pathway was blocked with myriocin pre-treatment, we observed a decrease in PA-mediated induction of autophagy, although there was no change with the toll-like receptor 4 inhibitor, TAK-242. Taken together, these findings provide evidence that saturated and unsaturated fatty acids can differentially regulate hypothalamic autophagy and that ceramide synthesis may be an important mediator of those effects. Understanding the mechanisms by which dietary fats affect autophagy in neurones involved in the control of energy homeostasis will provide potential new pathways for targeting and containing the obesity epidemic.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。