CRISPR/Cas9-mediated disruption of lipocalins, Ly6g5b, and Ly6g5c causes male subfertility in mice

CRISPR/Cas9 介导的脂质运载蛋白 Ly6g5b 和 Ly6g5c 破坏导致小鼠雄性生育力低下

阅读:6
作者:Nobuyuki Sakurai, Yoshitaka Fujihara, Kiyonori Kobayashi, Masahito Ikawa

Background

Spermatozoa become mature and competent for fertilization during transit from the caput epididymis to the cauda epididymis. However, detailed molecular mechanisms of epididymal sperm maturation are still unclear. Here, we focused on multiple epididymis-enriched genes: lipocalin family genes (Lcn5, Lcn6, Lcn8, Lcn9, and Lcn10) and Ly6 family genes (Ly6g5b and Ly6g5c). These genes are evolutionarily conserved in mammals and form clusters on chromosomes 2 and 17 in the mouse, respectively.

Conclusion

These results suggest epididymal secretory proteins are involved in ADAM3 maturation and acquisition of sperm fertilizing ability.

Methods

We generated four lines of KO mice: Lcn9 single KO, the lipocalin family quadruple KO (Lcn5, Lcn6, Lcn8, and Lcn10), quintuple KO (Lcn5, Lcn6, Lcn8, Lcn10, and Lcn9), and double KO of Ly6 family genes (Ly6g5b and Ly6g5c).

Objective

To clarify whether these genes are required for epididymal sperm maturation and acquisition of fertilizing ability, we generated knockout (KO) mice using the CRISPR/Cas9 system and analyzed their phenotype. Materials and

Results

Although the Lcn9 single KO did not affect male fertility, the quadruple KO and quintuple KO male mice were subfertile and mostly infertile, respectively, with a reduced amount of ADAM3, an essential protein for sperm binding to the zona pellucida. Further analysis revealed that the quintuple KO spermatozoa lack the CMTM2A/B that are required for ADAM3 maturation. Intriguingly, Ly6g5b and Ly6g5c double KO male mice also showed subfertility with reduced sperm ADAM3.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。