Overexpression of dominant negative peroxisome proliferator-activated receptor-γ (PPARγ) in alveolar type II epithelial cells causes inflammation and T-cell suppression in the lung

肺泡 II 型上皮细胞中显性负性过氧化物酶体增殖激活受体-γ (PPARγ) 的过度表达导致肺部炎症和 T 细胞抑制

阅读:6
作者:Lingyan Wu, Guixue Wang, Peng Qu, Cong Yan, Hong Du

Abstract

Peroxisome proliferator-activated receptor-γ (PPARγ) is an anti-inflammatory molecule. To assess its biological function in lung alveolar epithelial cells, a CCSP-rtTA/(tetO)(7)-dnPPARγ bitransgenic mouse model was generated. In this model, a dominant negative (dn) PPARγ-Flag fusion protein was overexpressed in lung alveolar type II (AT II) epithelial cells in an inducible manner to suppress the endogenous PPARγ function. Overexpression of dnPPARγ induces up-regulation of proinflammatory cytokines and chemokines at both mRNA and protein levels in AT II epithelial cells. This up-regulation was due to dnPPARγ directly DNA binding on the promoter regions. Up-regulation of proinflammatory molecules activated multiple intracellular signaling pathways in AT II epithelial cells. In addition, inflammatory CD11b(+)Gr-1(+) myeloid-derived suppressor cells were significantly accumulated but T cells were decreased in the lung and circulation system of doxycycline-treated mice. In vitro, myeloid-derived suppressor cells from the lung suppressed T-cell proliferation and function. As a pathogenic consequence, emphysema was observed in the doxycycline-treated lung in association with up-regulation of matrix metalloproteases. Chronic inflammation and lung injury also induced conversion of bone marrow mesenchymal stem cells into AT II epithelial cells in bitransgenic mice. These findings support that PPARγ and its negatively regulated downstream genes in AT II epithelial cells possess multiple functions to control alveolar homeostasis through inflammatory and noninflammatory mechanisms.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。