Columnar Injection for Intracerebral Cell Therapy

柱状注射用于脑内细胞治疗

阅读:4
作者:Jeffrey S Schweitzer, Bin Song, Pierre R Leblanc, Melissa Feitosa, Bob S Carter, Kwang-Soo Kim

Background

Surgical implantation of cellular grafts into the brain is of increasing importance, as stem cell-based therapies for Parkinson and other diseases continue to develop. The effect of grafting technique on development and survival of the graft has received less attention. Rate and method of graft delivery may impact the cell viability and success of these therapies. Understanding the final location of the graft with respect to the intended target location is also critical.

Conclusion

We suggest that this columnar injection technique may allow better engraftment and development of intracerebral grafts, enhancing outcomes of cell therapy, compared to fixed-point injection techniques.

Methods

Using a clinically relevant model system of human embryonic stem cell-derived dopaminergic progenitors injected into athymic rat host brain, we describe a novel device that allows separate control of syringe barrel and plunger, permitting precise deposition of the contents into the cannula tract during withdrawal. Controls consist of contralateral injection using traditional techniques. Graft histology was examined at graft maturity.

Objective

To describe a "columnar injection" technique designed to reduce damage to host tissue and result in a column of graft material with greater surface area to volume ratio than traditional injection techniques.

Results

Bolus grafts were centered on the injection tract but were largely proximal to the "target" location. These grafts displayed a conspicuous peripheral distribution of cells, particularly of mature dopaminergic neurons. In contrast, column injections remained centered at the intended target, contained more evenly distributed cells, and had significantly more mature dopaminergic neurons.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。