Development and In Vitro Evaluation of Biocompatible PLA-Based Trilayer Nanofibrous Membranes for the Delivery of Nanoceria: A Novel Approach for Diabetic Wound Healing

用于输送纳米二氧化铈的生物相容性 PLA 基三层纳米纤维膜的开发和体外评估:一种治疗糖尿病伤口愈合的新方法

阅读:5
作者:Mohamed Ahmed Mohamady Hussein, Sena Su, Songul Ulag, Agata Woźniak, Mariusz Grinholc, Gökce Erdemir, Serap Erdem Kuruca, Oguzhan Gunduz, Mamoun Muhammed, Ibrahim M El-Sherbiny, Mosaad Megahed

Abstract

The attempts to explore and optimize the efficiency of diabetic wound healing's promotors are still in progress. Incorporation of cerium oxide nanoparticles (nCeO2) in appropriate nanofibers (NFs) can prolong and maximize their promoting effect for the healing of diabetic wounds, through their sustained releases, as well as the nanofibers role in mimicking of the extra cellular matrix (ECM). The as-prepared nCeO2 were analyzed by using UV-Vis spectroscopy, XRD, SEM-EDX, TEM and FTIR, where TEM and SEM images of both aqueous suspension and powder showed spherical/ovoid-shaped particles. Biodegradable trilayer NFs with cytobiocompatibility were developed to sandwich nCeO2 in PVA NFs as a middle layer where PLA NFs were electrospun as outer bilayer. The nCeO2-loaded trilayer NFs were characterized by SEM, XRD, FTIR and DSC. A two-stage release behavior was observed when the nanoceria was released from the trilayer-based nanofibers; an initial burst release took place, and then it was followed by a sustained release pattern. The mouse embryo fibroblasts, i.e., 3T3 cells, were seeded over the nCeO2-loaded NFs mats to investigate their cyto-biocompatibility. The presence and sustained release of nCeO2 efficiently enhance the adhesion, growth and proliferation of the fibroblasts' populations. Moreover, the incorporation of nCeO2 with a higher amount into the designed trilayer NFs demonstrated a significant improvement in morphological, mechanical, thermal and cyto-biocompatibility properties than lower doses. Overall, the obtained results suggest that designated trilayer nanofibrous membranes would offer a specific approach for the treatment of diabetic wounds through an effective controlled release of nCeO2.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。