Novel Ionic Conducting Composite Membrane Based on Polymerizable Ionic Liquids

基于可聚合离子液体的新型离子导电复合膜

阅读:4
作者:Yaroslav L Kobzar, Ghania Azzouz, Hashim Albadri, Jocelyne Levillain, Isabelle Dez, Annie-Claude Gaumont, Laurence Lecamp, Corinne Chappey, Stéphane Marais, Kateryna Fatyeyeva

Abstract

In this work, the design and characterization of new supported ionic liquid membranes, as medium-temperature polymer electrolyte membranes for fuel-cell application, are described. These membranes were elaborated by the impregnation of porous polyimide Matrimid® with different synthesized protic ionic liquids containing polymerizable vinyl, allyl, or methacrylate groups. The ionic liquid polymerization was optimized in terms of the nature of the used (photo)initiator, its quantity, and reaction duration. The mechanical and thermal properties, as well as the proton conductivities of the supported ionic liquid membranes were analyzed in dynamic and static modes, as a function of the chemical structure of the protic ionic liquid. The obtained membranes were found to be flexible with Young's modulus and elongation at break values were equal to 1371 MPa and 271%, respectively. Besides, these membranes exhibited high thermal stability with initial decomposition temperatures > 300 °C. In addition, the resulting supported membranes possessed good proton conductivity over a wide temperature range (from 30 to 150 °C). For example, the three-component Matrimid®/vinylimidazolium/polyvinylimidazolium trifluoromethane sulfonate membrane showed the highest proton conductivity-~5 × 10-2 mS/cm and ~0.1 mS/cm at 100 °C and 150 °C, respectively. This result makes the obtained membranes attractive for medium-temperature fuel-cell application.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。