Optimizing Adaptive Therapy Based on the Reachability to Tumor Resistant Subpopulation

根据肿瘤耐药亚群的可达性优化自适应疗法

阅读:5
作者:Jiali Wang, Yixuan Zhang, Xiaoquan Liu, Haochen Liu

Abstract

Adaptive therapy exploits the self-organization of tumor cells to delay the outgrowth of resistant subpopulations successfully. When the tumor has aggressive resistant subpopulations, the outcome of adaptive therapy was not superior to maximum tolerated dose therapy (MTD). To explore methods to improve the adaptive therapy's performance of this case, the tumor system was constructed by osimertinib-sensitive and resistant cell lines and illustrated by the Lotka-Volterra model in this study. Restore index proposed to assess the system reachability can predict the duration of each treatment cycle. Then the threshold of the restore index was estimated to evaluate the timing of interrupting the treatment cycle and switching to high-frequency administration. The introduced reachability-based adaptive therapy and classic adaptive therapy were compared through simulation and animal experiments. The results suggested that reachability-based adaptive therapy showed advantages when the tumor has an aggressive resistant subpopulation. This study provides a feasible method for evaluating whether to continue the adaptive therapy treatment cycle or switch to high-frequency administration. This method improves the gain of adaptive therapy by taking into account the benefits of tumor intra-competition and the tumor control of killing sensitive subpopulation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。