Long non-coding RNA LOC554202 modulates chordoma cell proliferation and invasion by recruiting EZH2 and regulating miR-31 expression

长链非编码RNA LOC554202通过募集EZH2和调节miR-31表达来调节脊索瘤细胞增殖和侵袭

阅读:5
作者:Xianli Ma, Shengjin Qi, Zhenying Duan, Hongzhan Liao, Baohua Yang, Wenbo Wang, Jie Tan, Qinghua Li, Xuewei Xia

Conclusion

Our results suggest that LOC554202 may play an important role in the progression of chordoma by the direct upregulation of EZH2 and indirect promotion of RNF144B via miR-31.

Methods

The levels of LOC554402, miR-31, EZH2, RNF144B, and epithelial-mesenchymal transition (EMT) markers were measured in chordoma tissues and the chordoma cell lines via quantitative real-time PCR (qRT-PCR) or Western blot. FISH assay demonstrated the LOC554402 expression in chordoma tissues. The chordoma cell lines, U-CH1 and JHC7, were transfected with siRNA or miRNA mimics and analysed for cell proliferation ability, apoptosis, cell migration, and invasion. RNA pull down, RIP assay, and Luciferase Reporter Assay were used to analyze the interaction between LOC554202 and EZH2. Animal tumour xenografts were generated, and qRT-PCR was performed to investigate EZH2, miR-31, and RNB144B expression on tumour growth in vivo.

Results

We found elevated expression of LOC554202 was associated with a decreased level of miR-31 in cancer tissues. Knockdown of LOC554202 or overexpression of miR-31 suppressed the proliferation, migration, and invasion of chordoma cells. Unexpectedly, EZH2 as a binding protein of LOC554202, and it was positively regulated by LOC554202, leading to the reduced expression of miR-31. Furthermore, the impaired function of miR-31 restored expression of the oncogene RNF144B and maintained the metastasis-promoting activity in vitro. The results in vivo confirmed the anti-tumour effects of knockdown of LOC554202, which inhibited EZH2/miR-31 to activate the oncogene RNF144B.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。