ATP7A-dependent copper sequestration contributes to termination of β-CATENIN signaling during early adipogenesis

ATP7A 依赖的铜封存有助于在早期脂肪生成过程中终止 β-CATENIN 信号传导

阅读:6
作者:H Yang, E Kabin, Y Dong, X Zhang, M Ralle, S Lutsenko

Conclusions

Cu buffering during early adipogenesis contributes to termination of β-catenin signaling. Abnormal upregulation of β-catenin was also observed in vivo in the livers of Atp7b-/- mice, which accumulate Cu, suggesting a tissue-independent crosstalk between Cu homeostasis and the Wnt/β-catenin pathway. These results point to a new regulatory role of Cu in adipocytes and contribute to better understanding of human disorders of Cu misbalance.

Methods

To determine the role of Cu is adipocytes differentiation, we used 3T3-L1 adipocytes, immunocytochemistry, X-ray fluorescence, mass-spectrometry, pharmacological treatments, and manipulations of copper levels.

Results

In differentiating 3T3-L1 cells, adipogenic stimuli trigger the upregulation and trafficking of the Cu transporter Atp7a, thus causing Cu redistribution from the cytosol to vesicles. Disrupting Cu homeostasis by the deletion of Atp7a results in Cu elevation and inhibition of adipogenesis. The upregulation of C/EBPβ, an initial step of adipogenesis, is not affected in Atp7a-/- cells, whereas the subsequent upregulation of PPARγ is inhibited. Comparison of changes in the Atp7a-/- and wild type cells proteomes during early adipogenesis revealed stabilization of β-catenin, a negative regulator of adipogenesis. Cu chelation, or overexpression of the Cu transporter ATP7B in Atp7a-/- cells, restored β-catenin down-regulation and intracellular targeting. Conclusions: Cu buffering during early adipogenesis contributes to termination of β-catenin signaling. Abnormal upregulation of β-catenin was also observed in vivo in the livers of Atp7b-/- mice, which accumulate Cu, suggesting a tissue-independent crosstalk between Cu homeostasis and the Wnt/β-catenin pathway. These results point to a new regulatory role of Cu in adipocytes and contribute to better understanding of human disorders of Cu misbalance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。