The Predicted Splicing Variant c.11+5G>A in RPE65 Leads to a Reduction in mRNA Expression in a Cell-Specific Manner

RPE65 中预测的剪接变体 c.11+5G>A 导致细胞特异性 mRNA 表达降低

阅读:6
作者:Irene Vázquez-Domínguez, Lonneke Duijkers, Zeinab Fadaie, Eef C W Alaerds, Merel A Post, Edwin M van Oosten, Luke O'Gorman, Michael Kwint, Louet Koolen, Anita D M Hoogendoorn, Hester Y Kroes, Christian Gilissen, Frans P M Cremers, Rob W J Collin, Susanne Roosing, Alejandro Garanto

Abstract

Pathogenic variants in RPE65 lead to retinal diseases, causing a vision impairment. In this work, we investigated the pathomechanism behind the frequent RPE65 variant, c.11+5G>A. Previous in silico predictions classified this change as a splice variant. Our prediction using novel software's suggested a 124-nt exon elongation containing a premature stop codon. This elongation was validated using midigenes-based approaches. Similar results were observed in patient-derived induced pluripotent stem cells (iPSC) and photoreceptor precursor cells. However, the splicing defect in all cases was detected at low levels and thereby does not fully explain the recessive condition of the resulting disease. Long-read sequencing discarded other rearrangements or variants that could explain the diseases. Subsequently, a more relevant model was employed: iPSC-derived retinal pigment epithelium (RPE) cells. In patient-derived iPSC-RPE cells, the expression of RPE65 was strongly reduced even after inhibiting a nonsense-mediated decay, contradicting the predicted splicing defect. Additional experiments demonstrated a cell-specific gene expression reduction due to the presence of the c.11+5G>A variant. This decrease also leads to the lack of the RPE65 protein, and differences in size and pigmentation between the patient and control iPSC-RPE. Altogether, our data suggest that the c.11+5G>A variant causes a cell-specific defect in the expression of RPE65 rather than the anticipated splicing defect which was predicted in silico.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。