JMJD1C Regulates Megakaryopoiesis in In Vitro Models through the Actin Network

JMJD1C 通过肌动蛋白网络调控体外模型中的巨核细胞生成

阅读:11
作者:Jialing Wang, Xiaodan Liu, Haixia Wang, Lili Qin, Anhua Feng, Daoxin Qi, Haihua Wang, Yao Zhao, Lihua Kong, Haiying Wang, Lin Wang, Zhenbo Hu, Xin Xu

Abstract

The histone demethylase JMJD1C is associated with human platelet counts. The JMJD1C knockout in zebrafish and mice leads to the ablation of megakaryocyte-erythroid lineage anemia. However, the specific expression, function, and mechanism of JMJD1C in megakaryopoiesis remain unknown. Here, we used cell line models, cord blood cells, and thrombocytopenia samples, to detect the JMJD1C expression. ShRNA of JMJD1C and a specific peptide agonist of JMJD1C, SAH-JZ3, were used to explore the JMJD1C function in the cell line models. The actin ratio in megakaryopoiesis for the JMJDC modulation was also measured. Mass spectrometry was used to identify the JMJD1C-interacting proteins. We first show the JMJD1C expression difference in the PMA-induced cell line models, the thrombopoietin (TPO)-induced megakaryocyte differentiation of the cord blood cells, and also the thrombocytopenia patients, compared to the normal controls. The ShRNA of JMJD1C and SAH-JZ3 showed different effects, which were consistent with the expression of JMJD1C in the cell line models. The effort to find the underlying mechanism of JMJD1C in megakaryopoiesis, led to the discovery that SAH-JZ3 decreases F-actin in K562 cells and increases F-actin in MEG-01 cells. We further performed mass spectrometry to identify the potential JMJD1C-interacting proteins and found that the important Ran GTPase interacts with JMJD1C. To sum up, JMJD1C probably regulates megakaryopoiesis by influencing the actin network.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。