Effect of Elevated Temperature and Humidity on Fibers Based on 5-amino-2-(p-aminophenyl) benzimidazole (PBIA)

高温和高湿对 5-氨基-2-(对氨基苯基)苯并咪唑 (PBIA) 纤维的影响

阅读:6
作者:Amy Engelbrecht-Wiggans, Thanh Nhi Hoang, Viviana Bentley, Ajay Krishnamurthy, Lucas Kaplan, Amanda L Forster

Abstract

Soft body armor is typically comprised of materials such as aramid. Recently, copolymer fibers based on the combination of 5-amino-2-(p-aminophenyl) benzimidazole (PBIA) and PPTA were introduced to the body armor marketplace. The long-term stability of these copolymer fibers have not been the subject of much research, however they may be sensitive to hydrolysis due to elevated humidity because they are condensation polymers. Efforts to evaluate the impact of environmental conditions on fiber strength is very important for the adoption of these materials in armor systems. Three PBIA-based fibers were selected for the study, and were aged at 25 °C, 75 % RH; 43 °C, 41 % RH; 55 °C, 60 % RH; and 70 °C, 76 % RH for up to 524 d. Molecular spectroscopy, scanning electron microscopy, and single fiber tensile testing were performed to characterize changes in their chemical structure, tensile strength, and failure strain as a function of exposure time to different conditions. The fibers were all found to have some reduction in strength at high humidity conditions, with an approximately 14 % reduction for the copolymers and a 29 % reduction for the homopolymer. Molecular spectroscopy revealed some changes which suggest that hydrolysis of the benzimidazole ring is occurring at these elevated temperatures, possibly explaining the observed change in strength.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。