Polydom Is an Extracellular Matrix Protein Involved in Lymphatic Vessel Remodeling

Polydom 是一种参与淋巴管重塑的细胞外基质蛋白

阅读:5
作者:Nanami Morooka, Sugiko Futaki, Ryoko Sato-Nishiuchi, Masafumi Nishino, Yuta Totani, Chisei Shimono, Itsuko Nakano, Hiroyuki Nakajima, Naoki Mochizuki, Kiyotoshi Sekiguchi

Conclusions

Polydom affects remodeling of lymphatic vessels in both mouse and zebrafish. Polydom deposited around lymphatic vessels seems to ensure Foxc2 upregulation in lymphatic endothelial cells, possibly via the Ang-2 and Tie1/Tie2 receptor system.

Objective

Polydom (also called Svep1) is an extracellular matrix protein identified as a high-affinity ligand for integrin α9β1. However, its physiological function is unclear. Here, we investigated the role of Polydom in lymphatic development.

Results

We generated Polydom-deficient mice. Polydom-/- mice showed severe edema and died immediately after birth because of respiratory failure. We found that although a primitive lymphatic plexus was formed, it failed to undergo remodeling in Polydom-/- embryos, including sprouting of new capillaries and formation of collecting lymphatic vessels. Impaired lymphatic development was also observed after knockdown/knockout of polydom in zebrafish. Polydom was deposited around lymphatic vessels, but secreted from surrounding mesenchymal cells. Expression of Foxc2 (forkhead box protein c2), a transcription factor involved in lymphatic remodeling, was decreased in Polydom-/- mice. Polydom bound to the lymphangiogenic factor Ang-2 (angiopoietin-2), which was found to upregulate Foxc2 expression in cultured lymphatic endothelial cells. Expressions of Tie1/Tie2 receptors for angiopoietins were also decreased in Polydom-/- mice. Conclusions: Polydom affects remodeling of lymphatic vessels in both mouse and zebrafish. Polydom deposited around lymphatic vessels seems to ensure Foxc2 upregulation in lymphatic endothelial cells, possibly via the Ang-2 and Tie1/Tie2 receptor system.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。