Integrating NGS-derived mutational profiling in the diagnosis of multiple lung adenocarcinomas

整合 NGS 衍生的突变分析来诊断多种肺腺癌

阅读:6
作者:Nicole Ezer, Hangjun Wang, Andrea Gomez Corredor, Pierre Olivier Fiset, Ayesha Baig, Léon C van Kempen, George Chong, Marianne S M Issac, Richard Fraser, Alan Spatz, Jean-Baptiste Riviere, Philippe Broët, Jonathan Spicer, Sophie Camilleri-Broët

Background

Distinguishing between multiple primary lung cancers (MPLC) and intrapulmonary metastases (IPM) is challenging. The goal of this study was to evaluate how Next Generation Sequencing (NGS) information may be integrated in the diagnostic strategy. Patients and

Conclusion

Integrating the information of NGS data may significantly improve accuracy of diagnosis and staging.

Methods

Patients with multiple lung adenocarcinomas were classified using both the comprehensive histologic assessment and NGS. We computed the joint probability of each pair having independent mutations by chance (thus being classified as MPLC). These probabilities were computed using the marginal mutation rates of each mutation, and the known negative dependencies between driver genes and different gene loci. With these NGS-driven data, cases were re-classified as MPLC or IPM.

Results

We analyzed 61 patients with a total of 131 tumors. The most frequent mutation was KRAS (57.3%) which occured at a rate higher than expected (p < 0.001) in lung cancer. No mutation was detected in 25/131 tumors (19.1%). Discordant molecular findings between tumor sites were found in 46 patients (75.4%); 11 patients (18.0%) had concordant molecular findings, and 4 patients (6.6%) had concordant molecular findings at 2 of the 3 sites. After integration of the NGS data, the initial diagnosis was confirmed for 41 patients (67.2%), the diagnosis was revised for 12 patients (19.7%) or was considered as non-informative for 8 patients (13.1%).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。