Mesenchymal stem cells prolong survival and prevent lethal complications in a porcine model of fulminant liver failure

间充质干细胞可延长猪暴发性肝衰竭模型的生存期并预防致命并发症

阅读:7
作者:Niang-Cheng Lin, Hao-Hsiang Wu, Jennifer Hui-Chun Ho, Chin-Su Liu, Oscar Kuang-Sheng Lee

Background

Fulminant liver failure (FLF) is a life-threatening disease.

Conclusions

Together, MSCs prolong the survival and prevent lethal sequelae of I-R injury-induced FLF by maintenance of liver-function homeostasis and rescue of ROS in the acute stage and by homing and differentiation into hepatocytes in the subacute stage.

Methods

Lethal FLF was induced by ischemia-reperfusion (I-R) injury in mini-pigs, and MSCs were infused via splenic vein after reperfusion.

Results

Accumulated survival within 28 days was significantly improved by MSCs (P = 0.0348). Notably, MSCs maintained blood-gas homeostasis in the first 24 hours and prevented FLF-induced elevation of prothrombin time, international normalized ratio, and creatinine and ammonia levels in the first 3 days. With MSCs, serum levels of liver enzymes gradually decreased after 3 days, and platelet count was back to normal at 1 week of FLF. MSCs promoted liver regeneration within 2 weeks and differentiated into functional hepatocytes at 2-4 weeks after transplantation, evidenced by increase in Ki67-positive cells, detectable human hepatocyte growth factor, human vascular endothelial growth factor, human hepatocyte-specific antigen, and human albumin-expressing cells in the liver at different time points. Reactive oxidative species (ROS) were accumulated after FLF and eliminated at 4 weeks after MSC transplantation. Conclusions: Together, MSCs prolong the survival and prevent lethal sequelae of I-R injury-induced FLF by maintenance of liver-function homeostasis and rescue of ROS in the acute stage and by homing and differentiation into hepatocytes in the subacute stage.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。