Modulation of gold nanoparticle mediated radiation dose enhancement through synchronization of breast tumor cell population

通过同步乳腺肿瘤细胞群来调节金纳米粒子介导的辐射剂量增强

阅读:7
作者:Kristy Rieck, Kyle Bromma, Wonmo Sung, Aaron Bannister, Jan Schuemann, Devika Basnagge Chithrani

Conclusion

A triple combination of GNPs, cell cycle synchronization, and RT could pave the way to enhance the local radiation dose while minimizing side effects to the surrounding healthy tissue. Advances in knowledge: This is the first study to show that the combined use of GNPs, phase of tumor cell population, and RT could enhance tumor cell death.

Methods

We used a double-thymidine block method for synchronization of the tumor cell population. GNPs of diameters 17 and 46 nm were used to capture the size dependent effects. A radiation dose of 2 Gy with 6 MV linear accelerator was used to assess the efficacy of this proposed combined treatment. A triple negative breast cancer cell line, MDA-MB-231 was chosen as the model cell line. Monte Carlo (MC) calculations were done to predict the GNP-mediated cell death using the experimental GNP uptake data.

Objective

The incorporation of high atomic number materials such as gold nanoparticles (GNPs) into tumor cells is being tested to enhance the local radiotherapy (RT) dose. It is also known that the radiosensitivity of tumor cells depends on the phase of their cell cycle. Triple combination of GNPs, phase of tumor cell population, and RT for improved outcomes in cancer treatment.

Results

There was a 1.5- and 2- fold increase in uptake of 17 and 46 nm GNPs in the synchronized cell population, respectively. A radiation dose of 2 Gy with clinically relevant 6 MV photons resulted in a 62 and 38 % enhancement in cell death in the synchronized cell population with the incorporation of 17 and 46 nm GNPs, respectively. MC data supported the experimental data, but to a lesser extent.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。