IL-4R drives dedifferentiation, mitogenesis, and metastasis in rhabdomyosarcoma

IL-4R 促进横纹肌肉瘤的去分化、有丝分裂和转移

阅读:7
作者:Tohru Hosoyama, Mohammed Imran Aslam, Jinu Abraham, Suresh I Prajapati, Koichi Nishijo, Joel E Michalek, Lee Ann Zarzabal, Laura D Nelon, Denis C Guttridge, Brian P Rubin, Charles Keller

Conclusions

Our results indicate that an IL-4R-dependent signaling pathway regulates tumor cell progression in RMS, and inhibition of this pathway could be a promising adjuvant therapeutic approach.

Purpose

Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in childhood. The alveolar subtype of rhabdomyosarcoma (ARMS) is a paradigm for refractory and incurable solid tumors because more than half of the children at diagnosis have either regional lymph node or distant metastases. These studies follow our previous observation that Interleukin-4 receptor α (IL-4Rα) is upregulated in both human and murine ARMS, and that the IL-4R signaling pathway may be a target for abrogating tumor progression. Experimental design: By in vitro biochemical and cell biology studies as well as preclinical studies using a genetically engineered mouse model, we evaluated the role of IL-4 and IL-13 in IL-4R-mediated mitogenesis, myodifferentiation, and tumor progression.

Results

IL-4 and IL-13 ligands accelerated tumor cell growth and activated STAT6, Akt, or MAPK signaling pathways in the human RMS cell lines, RD and Rh30, as well as in mouse primary ARMS cell cultures. IL-4 and IL-13 treatment also decreased protein expression of myogenic differentiation factors MyoD and Myogenin, indicating a loss of muscle differentiation. Using a genetically engineered mouse model of ARMS, we have shown that inhibition of IL-4R signaling pathway with a neutralizing antibody has a profound effect on the frequency of lymph node and pulmonary metastases, resulting in significant survival extension in vivo. Conclusions: Our results indicate that an IL-4R-dependent signaling pathway regulates tumor cell progression in RMS, and inhibition of this pathway could be a promising adjuvant therapeutic approach.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。