Metformin increases degradation of phospholamban via autophagy in cardiomyocytes

二甲双胍通过心肌细胞自噬促进磷蛋白的降解

阅读:6
作者:Allen C T Teng, Tetsuaki Miyake, Shunichi Yokoe, Liyong Zhang, Luís Mário Rezende Jr, Parveen Sharma, David H MacLennan, Peter P Liu, Anthony O Gramolini

Abstract

Phospholamban (PLN) is an effective inhibitor of the sarco(endo)plasmic reticulum Ca(2+) ATPase (SERCA). Here, we examined PLN stability and degradation in primary cultured mouse neonatal cardiomyocytes (CMNCs) and mouse hearts using immunoblotting, molecular imaging, and [(35)S]methionine pulse-chase experiments, together with lysosome (chloroquine and bafilomycin A1) and autophagic (3-methyladenine and Atg5 siRNA) antagonists. Inhibiting lysosomal and autophagic activities promoted endogenous PLN accumulation, whereas accelerating autophagy with metformin enhanced PLN degradation in CMNCs. This reduction in PLN levels was functionally correlated with an increased rate of SERCA2a activity, accounting for an inotropic effect of metformin. Metabolic labeling reaffirmed that metformin promoted wild-type and R9C PLN degradation. Immunofluorescence showed that PLN and the autophagy marker, microtubule light chain 3, became increasingly colocalized in response to chloroquine and bafilomycin treatments. Mechanistically, pentameric PLN was polyubiquitinylated at the K3 residue and this modification was required for p62-mediated selective autophagy trafficking. Consistently, attenuated autophagic flux in HECT domain and ankyrin repeat-containing E3 ubiquitin protein ligase 1-null mouse hearts was associated with increased PLN levels determined by immunoblots and immunofluorescence. Our study identifies a biological mechanism that traffics PLN to the lysosomes for degradation in mouse hearts.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。