Blowing epithelial cell bubbles with GumB: ShlA-family pore-forming toxins induce blebbing and rapid cellular death in corneal epithelial cells

用 GumB 吹出上皮细胞气泡:ShlA 家族成孔毒素诱导角膜上皮细胞起泡和快速细胞死亡

阅读:7
作者:Kimberly M Brothers, Jake D Callaghan, Nicholas A Stella, Julianna M Bachinsky, Mohammed AlHigaylan, Kara L Lehner, Jonathan M Franks, Kira L Lathrop, Elliot Collins, Deanna M Schmitt, Joseph Horzempa, Robert M Q Shanks

Abstract

Medical devices, such as contact lenses, bring bacteria in direct contact with human cells. Consequences of these host-pathogen interactions include the alteration of mammalian cell surface architecture and induction of cellular death that renders tissues more susceptible to infection. Gram-negative bacteria known to induce cellular blebbing by mammalian cells, Pseudomonas and Vibrio species, do so through a type III secretion system-dependent mechanism. This study demonstrates that a subset of bacteria from the Enterobacteriaceae bacterial family induce cellular death and membrane blebs in a variety of cell types via a type V secretion-system dependent mechanism. Here, we report that ShlA-family cytolysins from Proteus mirabilis and Serratia marcescens were required to induce membrane blebbling and cell death. Blebbing and cellular death were blocked by an antioxidant and RIP-1 and MLKL inhibitors, implicating necroptosis in the observed phenotypes. Additional genetic studies determined that an IgaA family stress-response protein, GumB, was necessary to induce blebs. Data supported a model where GumB and shlBA are in a regulatory circuit through the Rcs stress response phosphorelay system required for bleb formation and pathogenesis in an invertebrate model of infection and proliferation in a phagocytic cell line. This study introduces GumB as a regulator of S. marcescens host-pathogen interactions and demonstrates a common type V secretion system-dependent mechanism by which bacteria elicit surface morphological changes on mammalian cells. This type V secretion-system mechanism likely contributes bacterial damage to the corneal epithelial layer, and enables access to deeper parts of the tissue that are more susceptible to infection.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。