Hepatocyte-intrinsic type I interferon signaling reprograms metabolism and reveals a novel compensatory mechanism of the tryptophan-kynurenine pathway in viral hepatitis

肝细胞内在 I 型干扰素信号重新编程代谢并揭示病毒性肝炎中色氨酸-犬尿氨酸通路的新型补偿机制

阅读:7
作者:Alexander Lercher, Alexandra M Popa, Csilla Viczenczova, Lindsay Kosack, Kristaps Klavins, Benedikt Agerer, Christiane A Opitz, Tobias V Lanz, Michael Platten, Andreas Bergthaler

Abstract

The liver is a central regulator of metabolic homeostasis and serum metabolite levels. Hepatocytes are the functional units of the liver parenchyma and not only responsible for turnover of biomolecules but also act as central immune signaling platforms. Hepatotropic viruses infect liver tissue, resulting in inflammatory responses, tissue damage and hepatitis. Combining well-established in vitro and in vivo model systems with transcriptomic analyses, we show that type I interferon signaling initiates a robust antiviral immune response in hepatocytes. Strikingly, we also identify IFN-I as both, sufficient and necessary, to induce wide-spread metabolic reprogramming in hepatocytes. IFN-I specifically rewired tryptophan metabolism and induced hepatic tryptophan oxidation to kynurenine via Tdo2, correlating with altered concentrations of serum metabolites upon viral infection. Infected Tdo2-deficient animals displayed elevated serum levels of tryptophan and, unexpectedly, also vast increases in the downstream immune-suppressive metabolite kynurenine. Thus, Tdo2-deficiency did not result in altered serum homeostasis of the tryptophan to kynurenine ratio during infection, which seemed to be independent of hepatocyte-intrinsic compensation via the IDO-axis. These data highlight that inflammation-induced reprogramming of systemic tryptophan metabolism is tightly regulated in viral hepatitis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。