NEAT1 Confers Radioresistance to Hepatocellular Carcinoma Cells by Inducing PINK1/Parkin-Mediated Mitophagy

NEAT1 通过诱导 PINK1/Parkin 介导的线粒体自噬赋予肝细胞癌细胞放射抗性

阅读:4
作者:Hiroyuki Tsuchiya, Ririko Shinonaga, Hiromi Sakaguchi, Yutaka Kitagawa, Kenji Yoshida, Goshi Shiota

Abstract

A long noncoding RNA, nuclear paraspeckle assembly transcript 1 (NEAT1) variant 1 (NEAT1v1), confers radioresistance to hepatocellular carcinoma (HCC) cells by inducing autophagy via γ-aminobutyric acid A receptor-associated protein (GABARAP). Radiation induces oxidative stress to damage cellular components and organelles, but it remains unclear how NEAT1v1 protects HCC cells from radiation-induced oxidative stress via autophagy. To address this, we precisely investigated NEAT1v1-induced autophagy in irradiated HCC cell lines. X-ray irradiation significantly increased cellular and mitochondrial oxidative stress and mitochondrial DNA content in HCC cells while NEAT1v1 suppressed them. NEAT1v1 concomitantly induced the phosphatase and tensin homolog-induced kinase 1 (PINK1)/parkin-mediated mitophagy. Interestingly, parkin expression was constitutively upregulated in NEAT1v1-overexpressing HCC cells, leading to increased mitochondrial parkin levels. Superoxide dismutase 2 (SOD2) was also upregulated by NEAT1v1, and GABARAP or SOD2 knockdown in NEAT1v1-overexpressing cells increased mitochondrial oxidative stress and mitochondrial DNA content after irradiation. Moreover, it was suggested that SOD2 was involved in NEAT1v1-induced parkin expression, and that GABARAP promoted parkin degradation via mitophagy. This study highlights the unprecedented roles of NEAT1v1 in connecting radioresistance and mitophagy in HCC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。