Brucella BtpB Manipulates Apoptosis and Autophagic Flux in RAW264.7 Cells

布鲁氏菌 BtpB 操纵 RAW264.7 细胞中的细胞凋亡和自噬通量

阅读:5
作者:Junmei Li, Lin Qi, Ziyang Diao, Mengyu Zhang, Bin Li, Yunyi Zhai, Mingyue Hao, Dong Zhou, Wei Liu, Yaping Jin, Aihua Wang

Abstract

Brucella transfers effectors into host cells, manipulating cellular processes to its advantage; however, the mechanism by which effectors regulate cellular processes during infection is poorly understood. A growing number of studies have shown that apoptosis and autophagy are critical mechanisms for target cells to cope with pathogens and maintain cellular homeostasis. BtpB is a Brucella type IV secretion system effector with a complex mechanism for manipulating host infection. Here, we show that the ectopic expression of BtpB promoted DNA fragmentation. In contrast, an isogenic mutant strain, ΔbtpB, inhibited apoptosis compared to the wild-type strain B. suis S2 in RAW264.7 cells. In addition, BtpB inhibited autophagy, as determined by LC3-II protein levels, the number of LC3 puncta, and p62 degradation. We also found that BtpB reduced autophagolysosome formation and blocked the complete autophagic flux. Moreover, our results revealed that the autophagy inhibitor, chloroquine, reduces Brucella's intracellular survival. Overall, our data unveil new mechanisms of virulence implicating the effector BtpB in regulating host intracellular infection.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。