MiR-20a-5p Regulates MPP+-Induced Oxidative Stress and Neuroinflammation in HT22 Cells by Targeting IRF9/NF- κ B Axis

MiR-20a-5p 通过靶向 IRF9/NF- κ B 轴调节 MPP+ 诱导的 HT22 细胞氧化应激和神经炎症

阅读:9
作者:Qiang Wang, Yuan Wang, Feng Zhou, Jie Li, Gang Lu, Yingqian Zhao

Abstract

Substantial evidence indicates that microRNAs (miRNAs) can be used as biological markers of Parkinson's disease (PD) and contribute to the risk assessment, early diagnosis, and treatment. We aimed to explore the role and potential mechanism of miR-20a-5p on inflammation and oxidative stress in 1-methyl-4-phenyl pyridine ion- (MPP+-) induced HT22 cells. HT22 cells were pretreated with miR-20a-5p mimic and/or pcDNA-IRF9 for 24 h and then treated with MPP+ (0.5 mM) for 24 h. The cell viability and apoptosis were determined using the Cell Counting Kit-8 (CCK-8) and Annexin V FITC/PI staining flow cytometry assay, respectively. The expression and secretion of inflammatory factors and oxidative stress-related factors were detected by enzyme-linked immunosorbent assay (ELISA). The protein expression levels were detected using Western blot analysis. Here, we discovered that MPP+ led to mitochondrial dysfunction, inflammation, and cell damage of HT22 cells, which were alleviated by miR-20a-5p overexpression. We further clarified that interferon regulatory factor 9 (IRF9) was a target gene of miR-20a-5p. IRF9 contributed to MPP+-induced mitochondrial disruption, inflammation, and cell apoptosis. Moreover, IRF9 hindered the improvement of miR-20a-5p overexpression on MPP+-induced neurotoxicity. Furthermore, the decrease of p-P65 level induced by miR-20a-5p mimic was significantly reversed by IRF9 overexpression. These findings demonstrate that miR-20a-5p contributes to MPP+-induced mitochondrial disruption and cell damage, and miR-20a-5p might be a novel therapeutic target for PD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。