Utilizing the KSC Fixation Tube to Conduct Human-Tended Plant Biology Experiments on a Suborbital Spaceflight

利用肯尼迪航天中心固定管在亚轨道航天飞行中进行人工栽培植物生物学实验

阅读:7
作者:Natasha J Haveman, Mingqi Zhou, Jordan Callaham, Hunter F Strickland, Donald Houze, Susan Manning-Roach, Gerard Newsham, Anna-Lisa Paul, Robert J Ferl

Abstract

Suborbital spaceflights now enable human-tended research investigating short-term gravitational effects in biological systems, eliminating the need for complex automation. Here, we discuss a method utilizing KSC Fixation Tubes (KFTs) to both carry biology to suborbital space as well as fix that biology at certain stages of flight. Plants on support media were inserted into the sample side of KFTs preloaded with RNAlater in the fixation chamber. The KFTs were activated at various stages of a simulated flight to fix the plants. RNA-seq analysis conducted on tissue samples housed in KFTs, showed that plants behaved consistently in KFTs when compared to petri-plates. Over the time course, roots adjusted to hypoxia and leaves adjusted to changes in photosynthesis. These responses were due in part to the environment imposed by the encased triple containment of the KFTs, which is a requirement for flight in human spacecraft. While plants exhibited expected reproducible transcriptomic alteration over time in the KFTs, responses to clinorotation during the simulated flight suggest that transcriptomic responses to suborbital spaceflight can be examined using this approach.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。