Ethanol, acetaldehyde, and estradiol affect growth and differentiation of rhesus monkey embryonic stem cells

乙醇、乙醛和雌二醇影响恒河猴胚胎干细胞的生长和分化

阅读:5
作者:Catherine A VandeVoort, Dana L Hill, Charles L Chaffin, Alan J Conley

Background

The timing of the origins of fetal alcohol syndrome has been difficult to determine, in part because of the challenge associated with in vivo studies of the peri-implantation stage of embryonic development. Because embryonic stem cells (ESCs) are derived from blastocyst stage embryos, they are used as a model for early embryo development.

Conclusions

Estradiol appeared to increase sensitivity to ethanol in the ORMES-6 and ORMES-7 cell line. The morphological changes and labeling for pluripotency, proliferation, and apoptosis demonstrated that how ethanol affects these early cells that develop in culture, their differentiation state in particular. The effects of ethanol may be mediated in part through metabolic pathways regulating acetaldehyde formation, and while potentially accentuated by estradiol in some individuals, how remains to be determined.

Methods

Rhesus monkey ESC lines (ORMES-6 and ORMES-7) were treated with 0, 0.01, 0.1, or 1.0% ethanol, 1.0% ethanol with estradiol, or 0.00025% acetaldehyde with or without estradiol for 4 weeks.

Results

Although control ESCs remained unchanged, abnormal morphology of ESCs in the ethanol and acetaldehyde treatment groups was observed before 2 weeks of treatment. Immunofluorescence staining of key pluripotency markers (TRA-1-81 and alkaline phosphatase) indicated a loss of ESC pluripotency in the 1.0% ethanol group. ORMES-7 was more sensitive to effects of ethanol than ORMES-6. Conclusions: Estradiol appeared to increase sensitivity to ethanol in the ORMES-6 and ORMES-7 cell line. The morphological changes and labeling for pluripotency, proliferation, and apoptosis demonstrated that how ethanol affects these early cells that develop in culture, their differentiation state in particular. The effects of ethanol may be mediated in part through metabolic pathways regulating acetaldehyde formation, and while potentially accentuated by estradiol in some individuals, how remains to be determined.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。