The Wnt antagonist Dkk1 regulates intestinal epithelial homeostasis and wound repair

Wnt 拮抗剂 Dkk1 调节肠上皮稳态和伤口修复

阅读:5
作者:Stefan Koch, Porfirio Nava, Caroline Addis, Wooki Kim, Timothy L Denning, Linheng Li, Charles A Parkos, Asma Nusrat

Aims

Dkk1 is a secreted antagonist of the Wnt/β-catenin signaling pathway. It is induced by inflammatory cytokines during colitis and exacerbates tissue damage by promoting apoptosis of epithelial cells. However, little is known about the physiologic role of Dkk1 in normal intestinal homeostasis and during wound repair following mucosal injury. We investigated whether inhibition of Dkk1 affects the morphology and function of the adult intestine.

Background & aims

Dkk1 is a secreted antagonist of the Wnt/β-catenin signaling pathway. It is induced by inflammatory cytokines during colitis and exacerbates tissue damage by promoting apoptosis of epithelial cells. However, little is known about the physiologic role of Dkk1 in normal intestinal homeostasis and during wound repair following mucosal injury. We investigated whether inhibition of Dkk1 affects the morphology and function of the adult intestine.

Conclusions

Dkk1, an antagonist of Wnt/β-catenin signaling, regulates intestinal epithelial homeostasis under physiologic conditions and during inflammation. Depletion of Dkk1 induces a strong proliferative response that promotes wound repair after colitis.

Methods

We used doubleridge mice (Dkk1d/d), which have reduced expression of Dkk1, and an inhibitory Dkk1 antibody to modulate Wnt/β-catenin signaling in the intestine. Intestinal inflammation was induced with dextran sulfate sodium (DSS), followed by a recovery period in which mice were given regular drinking water. Animals were killed before, during, or after DSS administration; epithelial homeostasis and the activity of major signaling pathways were investigated by morphometric analysis, bromo-2'-deoxyuridine incorporation, and immunostaining.

Results

Reduced expression of Dkk1 increased proliferation of epithelial cells and lengthened crypts in the large intestine, which was associated with increased transcriptional activity of β-catenin. Crypt extension was particularly striking when Dkk1 was inhibited during acute colitis. Dkk1d/d mice recovered significantly faster from intestinal inflammation but exhibited crypt architectural irregularities and epithelial hyperproliferation compared with wild-type mice. Survival signaling pathways were concurrently up-regulated in Dkk1d/d mice, including the AKT/β-catenin, ERK/Elk-1, and c-Jun pathways. Conclusions: Dkk1, an antagonist of Wnt/β-catenin signaling, regulates intestinal epithelial homeostasis under physiologic conditions and during inflammation. Depletion of Dkk1 induces a strong proliferative response that promotes wound repair after colitis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。