MCUR1-Mediated Mitochondrial Calcium Signaling Facilitates Cell Survival of Hepatocellular Carcinoma via Reactive Oxygen Species-Dependent P53 Degradation

MCUR1 介导的线粒体钙信号通过活性氧依赖性 P53 降解促进肝细胞癌细胞存活

阅读:8
作者:Tingting Ren, Jiaojiao Wang, Hui Zhang, Peng Yuan, Jianjun Zhu, Yousheng Wu, Qichao Huang, Xu Guo, Jing Zhang, Lele Ji, Jibin Li, Hongxin Zhang, Hushan Yang, Jinliang Xing

Aims

Levels of the mitochondrial calcium uniporter regulator 1 (MCUR1) increases during development of hepatocellular carcinoma (HCC). However, mechanisms of how mitochondrial Ca2+ homeostasis is modulated and its function remain limited in cancers.

Results

MCUR1 was frequently upregulated in HCC cells to enhance the Ca2+ uptake into mitochondria in an MCU-dependent manner, which significantly facilitated cell survival by inhibiting mitochondria-dependent intrinsic apoptosis and promoting proliferation of HCC cells, and thus led to poor prognosis. In vivo assay confirmed these results, indicating that overexpressed MCUR1 notably decreased the fraction of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells and increased the positive Ki67 staining in xenograft tumors, while reduced MCUR1 expression was associated with impaired growth capacity of HCC cells in nude mice. The survival advantage conferred by MCUR1-mediated mitochondrial Ca2+ uptake was majorly caused by elevated production of mitochondrial reactive oxygen species and subsequent AKT/MDM2- induced P53 degradation, which regulated the expression level of apoptosis-related molecules and cell cycle-related molecules. Treatment of mitochondrial Ca2+-buffering protein parvalbumin remarkably inhibited the growth of HCC cells. Conclusions and Innovation: Our study provides evidence supporting a possible tumor-promoting role for MCUR1-mediated mitochondrial Ca2+ uptake and uncovers a mechanistic understanding that links change of mitochondrial Ca2+ homeostasis to cancer cell survival, which suggests a potential novel therapeutic target for HCC. Antioxid. Redox Signal. 28, 1120-1136.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。