Identification of a role for histone H2B ubiquitylation in noncoding RNA 3'-end formation through mutational analysis of Rtf1 in Saccharomyces cerevisiae

通过对酿酒酵母中的 Rtf1 突变分析确定组蛋白 H2B 泛素化在非编码 RNA 3' 端形成中的作用

阅读:4
作者:Brett N Tomson, Christopher P Davis, Marcie H Warner, Karen M Arndt

Abstract

The conserved eukaryotic Paf1 complex regulates RNA synthesis by RNA polymerase II at multiple levels, including transcript elongation, transcript termination, and chromatin modifications. To better understand the contributions of the Paf1 complex to transcriptional regulation, we generated mutations that alter conserved residues within the Rtf1 subunit of the Saccharomyces cerevisiae Paf1 complex. Importantly, single amino acid substitutions within a region of Rtf1 that is conserved from yeast to humans, which we termed the histone modification domain, resulted in the loss of histone H2B ubiquitylation and impaired histone H3 methylation. Phenotypic analysis of these mutations revealed additional defects in telomeric silencing, transcription elongation, and prevention of cryptic initiation. We also demonstrated that amino acid substitutions within the Rtf1 histone modification domain disrupt 3'-end formation of snoRNA transcripts and identify a previously uncharacterized regulatory role for the histone H2B K123 ubiquitylation mark in this process. Cumulatively, our results reveal functionally important residues in Rtf1, better define the roles of Rtf1 in transcription and histone modification, and provide strong genetic support for the participation of histone modification marks in the termination of noncoding RNAs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。