Increased FoxO3a expression prevents osteoblast differentiation and matrix calcification

FoxO3a 表达增加可防止成骨细胞分化和基质钙化

阅读:5
作者:Kathy C Tang, Wanling Pan, Michael R Doschak, R Todd Alexander

Abstract

Forkhead Box O transcription factors play important roles in bone metabolism by defending against oxidative stress and apoptosis. FoxO3a is of special interest as it is the predominant isoform expressed in bone. In osteoblasts, the administration of 1,25 dihydroxyvitamin D3 (1,25D3) increases FoxO3a expression, and alters calcium handling. We therefore queried whether FoxO3a participates in vitamin D-mediated regulation of calcium transport pathways or matrix calcification, independent of reactive oxygen species (ROS) formation. To examine this possibility, we differentiated MC3T3-E1 cells into mature osteoblast-like cells over 7 days. This coincided with an increased ability to mineralize extracellular matrix. FoxO3a expression increased throughout differentiation. 1,25D3 enhanced both FoxO3a mRNA and protein expression. Immunofluorescence microscopy found increased FoxO3a nuclear localization with differentiation and after treatment with 1,25D3. Live cell ratiometric imaging with Fura-2AM identified significant L-type calcium channel mediated calcium uptake that was enhanced by 1,25D3. We observed expression of both Cav1.2 and Cav1.3, although expression decreased throughout differentiation and was not altered by 1,25D3 treatment. FoxO3a overexpression reduced calcium uptake and calcium deposition. FoxO3a overexpression also prevented alterations in calcium channel expression and the cell differentiation associated decrease in expression of Runx2 and increased expression of osteocalcin, findings consistent with a failure for the cells to differentiate. Based on both our expression and functional data, we suggest that high levels of FoxO3a prevent osteoblast differentiation and matrix calcification.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。