Sustained Delivery of SARS-CoV-2 RBD Subunit Vaccine Using a High Affinity Injectable Hydrogel Scaffold

利用高亲和力可注射水凝胶支架持续递送SARS-CoV-2 RBD亚单位疫苗

阅读:2
作者:Jing Chen ,Bo Wang ,Julia S Caserto ,Kaavian Shariati ,Peng Cao ,Yang Pan ,Qixuan Xu ,Minglin Ma

Abstract

The receptor binding domain (RBD) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein that mediates viral entry into host cells is a good candidate immunogen for vaccine development against coronavirus disease 2019 (COVID-19). Because of its small size, most preclinical and early clinical efforts have focused on multimerizing RBD on various formats of nanoparticles to increase its immunogenicity. Using an easily administered injectable hydrogel scaffold that is rationally designed for enhanced retainment of RBD, an alternative and facile approach for boosting RBD immunogenicity in mice is demonstrated. Prolonged delivery of poly (I:C) adjuvanted RBD by the hydrogel scaffold results in sustained exposure to lymphoid tissues, which elicits serum IgG titers comparable to those induced by three bolus injections, but more long-lasting and polarized toward TH 1-mediated IgG2b. The hydrogel scaffold induces potent germinal center (GC) reactions, correlating with RBD-specific antibody generation and robust type 1 T cell responses. Besides being an enduring RBD reservoir, the hydrogel scaffold becomes a local inflammatory niche for innate immune cell activation. Collectively, the injectable hydrogel scaffold provides a simple, practical, and inexpensive means to enhance the efficacy of RBD-based subunit vaccines against COVID-19 and may be applicable to other circulating and emerging pathogens.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。