Modulation of the tumor cell death pathway by androgen receptor in response to cytotoxic stimuli

雄激素受体对细胞毒性刺激反应中肿瘤细胞死亡途径的调节

阅读:8
作者:Michael Frezza, Huanjie Yang, Q Ping Dou

Abstract

Despite an initial response from androgen deprivation therapy, most prostate cancer patients relapse to a hormone-refractory state where tumors still remain dependent on androgen receptor (AR) function. We have previously shown that AR breakdown correlates with the induction of cancer cell apoptosis by proteasome inhibition. However, the involvement of AR in modulating the cell death pathway has remained elusive. To investigate this, we used an experimental model consisting of parental PC-3 prostate cancer cells that lack AR expression and PC-3 cells stably overexpressing wild type AR gene. Here, we report that both chemotherapeutic drugs (cisplatin) and proteasome inhibitors induced caspase-3-associated cell death in parental PC-3 cells whereas non-caspase-3 associated cell death in PC3-AR cells. The involvement of AR in modulating tumor cell death was further confirmed in PC-3 cells transiently expressing AR. Consistently, treatment with the clinically used proteasome inhibitor Bortezomib (Velcade/PS-341) of (AR+) LNCaP prostate cancer cells caused AR cleavage and cell death with low levels of caspase activation. However, co-treatment with Bortezomib and the AR antagonist Bicalutamide (Casodex) caused significant decrease in AR expression associated with an increase in caspase-3 activity in both LNCaP and PC3-AR cells. Thus our results provide compelling evidence for involvement of AR in deciding types of tumor cell death upon cytotoxic stimuli, and specifically, blockade of AR activities could change necrosis to apoptosis in tumor cells. Our findings may help guide clinicians based on AR status in the design of favorable treatment strategies for prostate cancer patients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。