Repair of Limb Ischemia Is Dependent on Hematopoietic Stem Cell Specific-SHP-1 Regulation of TGF-β1

肢体缺血修复依赖于造血干细胞特异性SHP-1对TGF-β1的调控

阅读:5
作者:Chen Wang #, Ravi Nistala, Min Cao, De-Pei Li, Yi Pan, Mojgan Golzy, Yuqi Cui, Zhenguo Liu, XunLei Kang

Background

Hematopoietic stem cell (HSC) therapy has shown promise for tissue regeneration after ischemia. Therefore, there is a need to understand mechanisms underlying endogenous HSCs activation in response to ischemic stress and coordination of angiogenesis and repair. SHP-1 plays important roles in HSC quiescence and differentiation by regulation of TGF-β1 signaling. TGF-β1 promotes angiogenesis by stimulating stem cells to secrete growth factors to initiate the formation of blood vessels and later aid in their maturation. We propose that SHP-1 responds to ischemia stress in HSC and progenitor cells (HSPC) via regulation of TGF-β1.

Conclusions

HSPC-SHP-1-mediated regulation of TGF-β1 in both bone marrow and peripheral blood is required for a normal response to ischemic stress.

Methods

A mouse hind limb ischemia model was used. Local blood perfusion in the limbs was determined using laser doppler perfusion imaging. The number of positive blood vessels per square millimeter, as well as blood vessel diameter (μm) and area (μm2), were calculated. Hematopoietic cells were analyzed using flow cytometry. The bone marrow transplantation assay was performed to measure HSC reconstitution.

Results

After femoral artery ligation, TGF-β1 was initially decreased in the bone marrow by day 3 of ischemia, followed by an increase on day 7. This pattern was opposite to that in the peripheral blood, which is concordant with the response of HSC to ischemic stress. In contrast, SHP-1 deficiency in HSC is associated with irreversible activation of HSPCs in the bone marrow and increased circulating HSPCs in peripheral blood following limb ischemia. In addition, there was augmented auto-induction of TGF-β1 and sustained inactivation of SHP-1-Smad2 signaling, which impacted TGF-β1 expression in HSPCs in circulation. Importantly, restoration of normal T GF-β1 oscillations helped in the recovery of limb repair and function. Conclusions: HSPC-SHP-1-mediated regulation of TGF-β1 in both bone marrow and peripheral blood is required for a normal response to ischemic stress.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。