The SOXE transcription factors-SOX8, SOX9 and SOX10-share a bi-partite transactivation mechanism

SOXE 转录因子 - SOX8、SOX9 和 SOX10 共享一个双向转录激活机制

阅读:7
作者:Abdul Haseeb, Véronique Lefebvre

Abstract

SOX8, SOX9 and SOX10 compose the SOXE transcription factor group. They govern cell fate and differentiation in many lineages, and mutations impairing their activity cause severe diseases, including campomelic dysplasia (SOX9), sex determination disorders (SOX8 and SOX9) and Waardenburg-Shah syndrome (SOX10). However, incomplete knowledge of their modes of action limits disease understanding. We here uncover that the proteins share a bipartite transactivation mechanism, whereby a transactivation domain in the middle of the proteins (TAM) synergizes with a C-terminal one (TAC). TAM comprises amphipathic α-helices predicted to form a protein-binding pocket and overlapping with minimal transactivation motifs (9-aa-TAD) described in many transcription factors. One 9-aa-TAD sequence includes an evolutionarily conserved and functionally required EΦ[D/E]QYΦ motif. SOXF proteins (SOX7, SOX17 and SOX18) contain an identical motif, suggesting evolution from a common ancestor already harboring this motif, whereas TAC and other transactivating SOX proteins feature only remotely related motifs. Missense variants in this SOXE/SOXF-specific motif are rare in control individuals, but have been detected in cancers, supporting its importance in development and physiology. By deepening understanding of mechanisms underlying the central transactivation function of SOXE proteins, these findings should help further decipher molecular networks essential for development and health and dysregulated in diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。