Oestrogen Non-Genomic Signalling is Activated in Tamoxifen-Resistant Breast Cancer

雌激素非基因组信号在耐他莫昔芬乳腺癌中被激活

阅读:6
作者:Coralie Poulard, Julien Jacquemetton, Olivier Trédan, Pascale A Cohen, Julie Vendrell, Sandra E Ghayad, Isabelle Treilleux, Elisabetta Marangoni, Muriel Le Romancer

Abstract

Endocrine therapies targeting oestrogen signalling have significantly improved breast cancer management. However, their efficacy is limited by intrinsic and acquired resistance to treatment, which remains a major challenge for oestrogen receptor α (ERα)-positive tumours. Though many studies using in vitro models of endocrine resistance have identified putative actors of resistance, no consensus has been reached. We demonstrated previously that oestrogen non-genomic signalling, characterized by the formation of the ERα/Src/PI3K complex, is activated in aggressive breast cancers (BC). We wondered herein whether the activation of this pathway is also involved in resistance to endocrine therapies. We studied the interactions between ERα and Src or PI3K by proximity ligation assay (PLA) in in-vitro and in-vivo endocrine therapy-resistant breast cancer models. We reveal an increase in ERα/Src and ERα/PI3K interactions in patient-derived xenografts (PDXs) with acquired resistance to tamoxifen, as well as in tamoxifen-resistant MCF-7 cells compared to parental counterparts. Moreover, no interactions were observed in breast cancer cells resistant to other endocrine therapies. Finally, the use of a peptide inhibiting the ERα-Src interaction partially restored tamoxifen sensitivity in resistant cells, suggesting that such components could constitute promising targets to circumvent resistance to tamoxifen in BC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。